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Abstract

Tuberculosis is an extremely serious disease that affects a large number of people around the
world. In this paper, we investigate epidemic model of TB in the sense of Caputo derivative,
integrating the impact of immune and asymptomatic classes. The primary challenge is accu-
rately estimating the disease spread and assessing the effectiveness of human immunity. We
establish the qualitative analysis of the constructed model, which include positivity, existence,
and uniqueness of the solution, and Hyers–Ulam stability of the solution. The computed basic
reproduction number R0 is used to obtain the normalized forward sensitivity index for each
parameter with the purpose of identifying key parameters essential for the disease control. Nu-
merical analysis are carried out utilizing the homotopy perturbation method and fractional dif-
ferential transformmethod. The comparative study of integer order ϱ = 1 is done to validate the
numerical performance. Our findings suggest that immune class and asymptomatic class indi-
viduals play a significant role in reducing/spreading TB prevalence and burden within human
populations. We noticed a significant decline in the susceptible and asymptomatic classes as a
result of self–immune and adequate treatment. These findings contribute to the management
and control of the tuberculosis disease.
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1 Introduction

Tuberculosis (TB) is a highly contagious bacterial infection caused by Mycobacterium tuber-
culosis. It poses a serious threat to public health and economic growth, especially in developing
countries. TB is among the top 13 killer diseases worldwide, after the human immunodeficiency
virus. It primarily affects the lungs but also can have an effect on other organs including the kid-
neys, bones, and main nervous system [1]. The study of infectious diseases has gained tremen-
dous attention after Sir Ronald Ross research on malaria [9]. Waaler et al. [40] developed the
first mathematical model of TB dynamics in 1960. The model focused on prediction and control
strategies utilizing simulation methodologies. The authors proposed the systems of nonlinear or-
dinary differential equations to describe the dynamics of TB. They used a probabilistic technique
to explain the linear relationship between infection rate and prevalence [34, 35]. Mathematical
modelling of infectious diseases has become an essential tool for public health decision–makers,
due to its prediction and ability to control the progression of diseases effectively [21].

In the recent time, there has been a shift towards using fractional order differential equations
for more accurate modelling of real–world phenomena, improving predictive precision and cap-
turing memory effects in dynamical systems including mrsa bacterial disease [13], HIV/AIDs
[25], TB [37], and COVID–19 [33]. In the context of TB, memory effects are critical due to the
long incubation period and latency before active disease state [11]. The epidemiological relevance
of fractional order Caputo–type mathematical models provide a more detailed understanding of
TB transmission dynamics than traditional compartmental models. By incorporating fractional
derivatives, these models capture long–term memory effects, non–integer behaviors, and spatial
heterogeneity, offering a realistic view of TB spread influenced by population mobility and social
networks.

These models also improve predictive accuracy, aiding in forecasting TB epidemics and as-
sessing the effectiveness of interventions like vaccination and treatment. Ultimately, they support
evidence–based public health strategies for TB control and prevention [36, 28]. Panchal et al. [31]
developed Caputo type SEITR TB model to analyze the disease dynamics. K.M. Owolabi and E.
Pindza [30] analyzed the Caputo fractional order TB model to investigate the control measures.
Avazzadeh et al. [5] investiaged the Caputo type fractional order TB model by using generalized
Laguerre polynomials. Using fractional order model, the studies [14, 6] demonstrated its effec-
tiveness by proving the solution existence and uniqueness. Atangana et al. [4] studied a novel
fractional order model and analyzed the stability and uniqueness of the solutions.

Stability is a key factor in qualitative theory of differential equations, and finding the exact
solution is often a complex and challenging task. Therefore, many numerical algorithms were
developed to solve the problem. In this sense, we evaluate the stability of the provided problem.
Literature contains a variety of stability types, including lyapunov, asymptotic, and exponential etc
[17, 26]. However, Ulam stability [39], the most significant kind of stability was initially identified
in 1940. After Ulam concept, Hyers [19] introduced Hyers–Ulam stability theory. Further, few
researchers [12, 41] analyzed the stability of infectious diseases models by using Hyers–Ulam
theory. Farman et al. [15] studied stability and sensitivity analysis of mathematical model for TB
infection with vaccinated group.

Recently, a novel analytical approach has emerged for solving fractional differential equations
knownas the fractional differential transformmethod (FDTM),which formulates fractional power
series. Elsaid [10] analyzed the application of FDTM with the combination of Adomian polyno-
mials. Ibis et al. [20] investigated the fractional differential algebraic equations by FDTM. Further-
more, He [18] developed the homotopy perturbation method (HPM). Olayiwola and Adedokun
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[29] utilized HPM method to analyze a novel Caputo fractional TB model with the treatment ef-
fects.

The main motivation behind this study is to analyze the dynamics of Caputo type fractional
order TB model by utilizing fractional calculus principles and simulate the numerical solutions of
the model via HPM and FDTM. This paper is compiled as follows. In Section 2, we describe the
proposed model formulation. Section 3 discuss some fundamental definitions, corollary, and the-
orems required for the model analysis. In Section 4, we prove the existence and uniqueness of the
model solution. Section 5 examines the disease–free and endemic equilibrium points and basic
reproduction number. In Section 6, we conducts Hyers–Ulam stability analysis. Section 7 covers
sensitivity analysis, which assesses the impact of model parameters on disease dynamics. In Sec-
tion 8, the HPM and FDTM are used to analyze the fractional model numerically. Additionally, we
accomplish numerical simulations to evaluate the impact of the solutions across various fractional
order values and model classes on the TB transmission dynamics. Finally, Section 9 conclude the
entire research.

2 Model Description

In this research, a fractional order model to describe the transmission dynamics of TB is pro-
posed. The model incorporates fractional derivatives to capture the memory effects and non-
integer order behaviors inherent in TB epidemiology. This paper distinctive novelty includes frac-
tional derivatives, multi–component structures, data integration, sensitivity analysis, and novel
mathematical techniques. These innovations collectively contribute to the TB model’s originality,
making it a more comprehensive and precise tool for understanding and controlling the disease.

The total population at time (ζ,N(ζ)) is dividing into seven compartments representing dif-
ferent stages including susceptible class S(ζ), the immunized class M(ζ), the exposed class E(ζ),
the asymptomatic class A(ζ), the infected class I(ζ), the treatment class T(ζ), and the recovered
classR(ζ). The model provides insights into the spread and control of TB in the population. This
fractional–order epidemic model is significant because it can better describe the complex dynam-
ics of tuberculosis transmission than typical compartmental models. Moreover, the model can
incorporate heterogeneity in TB transmission, accounting for factors such as population demo-
graphics, social interactions, and spatial distributions. The fractional order SMEAITR model is
considered as follows:

CDϱ
0S(ζ) = (1− πϱ)Λϱ + ρϱM+ (1− r1)λ

ϱE+ σϱR− αϱS(I+ βϱT)− ηϱS,
CDϱ

0M(ζ) = πϱΛϱ − (ρϱ + ηϱ)M,
CDϱ

0E(ζ) = αϱS(I+ βϱT)− (λϱ + γϱ + ωϱ + ηϱ)E,
CDϱ

0A(ζ) = r1λ
ϱE− (θϱ + ηϱ)A,

CDϱ
0I(ζ) = ωϱE+ θϱA− (ξϱ + ψϱ1 + ηϱ)I,

CDϱ
0T(ζ) = ξϱI− (µϱ + ψϱ2 + ηϱ)T,

CDϱ
0R(ζ) = γϱE+ µϱT− (σϱ + ηϱ)R,

(1)

with N = S + M + E + A + I + T + R. The parameters (1 − π)Λ and πΛ represent the rate
of recruitment that impacts a susceptible and immunized class respectively. Additionally, ρ indi-
cates the rate of drug discontinuation. Natural death rate is denoted by η. The infectious rate of
individuals of susceptible class S from infected class I due to close mutual contact is represented
by α, and β denotes the decrease of infectiousness. γ shows the contagious predisposition treat-
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ment effectiveness rate. ω is the rate at which innate TB evolves too highly infectious. The rate of
progression from E to A is symbolized by r1, and λ denotes the latency or incubation period.

The rate of people migrating from A to I is represented by θ. The symbol ξ reflects successful
treatment of infectious TB patients, whereas ψ1 represents the disease-induced mortality rate in I.
The TB–induced death rate in T is given by ψ2. The rate at which recovered TB patients progress
fromT toR is denoted by µ. Finally, σ represents the rate of recovered people becoming sensitive
again and rejoining the susceptible class. The schematic diagram of the dynamical Model (1) is
depicted in Figure 1.

Figure 1: Diagram of Model (1).

The outward arrow symbolizes the terms exiting the compartment, whereas inward arrow
signifies the term entering the compartment. It is reasonable to assume that for ζ ≥ 0, all variables
are greater than or equal to zero.

For simplicity Model (1) can be written as,

CDϱ
0S(ζ) = (1− πϱ)Λϱ + ρϱM+ (1− r1)λ

ϱE+ σϱR− αϱS(I+ βϱT)− ηϱS,
CDϱ

0M(ζ) = πϱΛϱ − k1M,
CDϱ

0E(ζ) = αϱS(I+ βϱT)− k2E,
CDϱ

0A(ζ) = r1λ
ϱE− k3A,

CDϱ
0I(ζ) = ωϱE+ θϱA− k4I,

CDϱ
0T(ζ) = ξϱI− k5T,

CDϱ
0R(ζ) = γϱE+ µϱT− k6R,

(2)

where

k1 = ρϱ + ηϱ, k2 = λϱ + γϱ + ωϱ + ηϱ, k3 = θϱ + ηϱ,

k4 = ξϱ + ψϱ1 + ηϱ, k5 = µϱ + ψϱ2 + ηϱ, k6 = σϱ + ηϱ.

In the above model, the fractional order derivatives denoted by CDϱ where ϱ ∈ (0, 1] are the
Caputo derivatives associated with biological parameters.
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3 Preliminaries

Definition 3.1. [22] Let Γ(.) is the gamma function and the fractional integral of order ϱ > 0 of a contin-
uous function g : R+ → R is defined as:

Iϱg(ζ) =
1

Γ(ϱ)

∫ ζ

0

(ζ − ϑ)ϱ−1g(ϑ)dϑ.

Definition 3.2. [8] The relative change in the variable divided by the relative change in the parameter is
the normalized forward sensitivity index of a quantity of interestR0 to a parameter of interest γ, is defined
by,

ΨR0
γ =

∂R0

∂γ

γ

R0
.

Definition 3.3. [2] The Caputo derivative Laplace transformation is defined as:

L[CDϱg(ζ)] = ϑϱG(ϑ)−
m−1∑
τ=0

ϑϱ−τ−1gτ (0), m− 1 < ϱ < m, m ∈ N.

Definition 3.4. [3] The Caputo fractional order ϱ derivative of a function f ∈ C(ρ)((0,∞), R) is defined
as:

CDϱ
0
f(ζ) =

1

Γ(ρ− ϱ)

∫ ζ

ζ0

(ζ − ϑ)ρ−ϱ−1f (ρ)(ϑ)dϑ, (3)

where ρ = [ϱ] + 1 and [ϱ] is integer part of ϱ.

We expand the continuous function f(ζ) in the form of a fractional power series is,

f(ζ) =

∞∑
τ=0

F (τ)(ζ − ζ0)
τ
ϱ , (4)

the fractional differential transform of f(ζ) is denoted by F (τ), where ϱ is the order of fraction.
To avoid fractional initial and boundary conditions, we define the fractional derivative via Caputo
definition. The relationship between the Riemann–Liouville and Caputo operators is given by,

Dϱ
∗ζ0f(ζ) = Dϱ

ζ0 ·
[
f(ζ)−

ρ−1∑
τ=0

1

τ !
(ζ − ζ0)

τf (τ)(ζ0)

]
. (5)

Setting f(ζ) = f(ζ)−
ρ−1∑
τ=0

1

τ !
(ζ − ζ0)

τf (τ)(ζ0) in (4) and using (5), the fractional derivative in the

Caputo sense [7] is,

Dϱ
∗ζ0f(ζ) =

1

Γ(ρ− ϱ)

dρ

dζρ

∫ ζ

ζ0

f(ϑ)−
∑ρ−1
τ=0

1
τ ! (ϑ− ζ0)

τf (τ)(ζ0)

(ζ − ϑ)1+ϱ−ρ
dϑ.

As the initial conditions are applied to the derivatives of integer orders, the transformation of the
initial conditions can be expressed as follows:

F (τ) =


1( τ
m

)
!

d

τ

mf(ζ)

dζ

τ

m

∣∣∣∣∣∣∣
ζ=ζ0

, if τ

m
∈ Z+, for τ = 0, 1, 2, . . . , (mϱ− 1),

0, if τ

m
/∈ Z+,
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where ϱ is fractional order, andm is to be chosen as a positive integer.

Let H(τ) and G(τ) be the Laplace transformation of h(ζ) and g(ζ), respectively then we have
the following existing theorems.

Theorem 3.1. [20] If h(ζ) = f(ζ)± g(ζ) then H(τ) = F (τ)±G(τ).

Theorem 3.2. [20] If h(ζ) = f(ζ) · g(ζ) then H(τ) =
∑τ
l=0 F (l) ·G(τ − l).

Theorem 3.3. [20] If h(ζ) = (ζ − ζ0)
ϱ then H(τ) = δ(τ −mϱ) where,

δ(τ) =

{
1, τ = 0,

0, τ ̸= 0.
(6)

Theorem 3.4. [20] If f(ζ) = Dϱ
ζ0
[h(ζ)] then F (τ) =

Γ

(
ϱ+1+

τ

m

)
Γ

(
1+
τ

m

) H(τ +mϱ).

Corollary 3.1. [16] Let g(ζ) ∈ C[c, d], CDϱg(ζ) ∈ C[c, d], and 0 < ϱ ≤ 1. If,{
CDϱg(ζ) ≥ 0, then g(ζ) is non–decreasing,
CDϱg(ζ) ≤ 0, then g(ζ) is non–increasing,

for all ζ ∈ (c, d).

4 Theoretical Analysis

4.1 Existence and uniqueness

This part demonstrate the existence and uniqueness of the system (2). First, we have,

CDϱ
0S(ζ) = G1 = (1− πϱ)Λϱ + ρϱM+ (1− r1)λ

ϱE+ σϱR− αϱS(I+ βϱT)− ηϱS,
CDϱ

0M(ζ) = G2 = πϱΛϱ − k1M,
CDϱ

0E(ζ) = G3 = αϱS(I+ βϱT)− k2E,
CDϱ

0A(ζ) = G4 = r1λ
ϱE− k3A,

CDϱ
0I(ζ) = G5 = ωϱE+ θϱA− k4I,

CDϱ
0T(ζ) = G6 = ξϱI− k5T,

CDϱ
0R(ζ) = G7 = γϱE+ µϱT− k6R,

(7)

with initial condition S(0) = S0, M(0) = M0, E(0) = E0, A(0) = A0, I(0) = I0, T(0) = T0,
R(0) = R0 and Gi i = 1, . . . , 7 are singular kernels. From (7), we have,{

CDϱH(ζ) = Ψ(ζ,H(ζ)),

H(0) = H0 ≥ 0, 0 ≤ ζ ≤ T <∞, 0 < ϱ ≤ 1,
(8)

where H(ζ) = (S,M,E,A, I,T,R)T , H(0) = (S0,M0,E0,A0, I0,T0,R0)
T . Using the integral

form of the both sides of (8), we obtain,

H(ζ)−H(0) =
1

Γ(ϱ)

∫ ζ

0

Ψ(ϑ,H(ϑ))(ζ − ϑ)ϱ−1dϑ. (9)
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Let us write (9) for each class of the proposed model as,

S(ζ)− S(0) =
1

Γ(ϱ)

∫ ζ

0

(ζ − ϑ)ϱ−1[G1(ϑ,S(ϑ))]dϑ,

M(ζ)−M(0) =
1

Γ(ϱ)

∫ ζ

0

(ζ − ϑ)ϱ−1[G2(ϑ,M(ϑ))]dϑ,

E(ζ)−E(0) =
1

Γ(ϱ)

∫ ζ

0

(ζ − ϑ)ϱ−1[G3(ϑ,E(ϑ))]dϑ,

A(ζ)−A(0) =
1

Γ(ϱ)

∫ ζ

0

(ζ − ϑ)ϱ−1[G4(ϑ,A(ϑ))]dϑ,

I(ζ)− I(0) =
1

Γ(ϱ)

∫ ζ

0

(ζ − ϑ)ϱ−1[G5(ϑ, I(ϑ))]dϑ,

T(ζ)−T(0) =
1

Γ(ϱ)

∫ ζ

0

(ζ − ϑ)ϱ−1[G6(ϑ,T(ϑ))]dϑ,

R(ζ)−R(0) =
1

Γ(ϱ)

∫ ζ

0

(ζ − ϑ)ϱ−1[G7(ϑ,R(ϑ))]dϑ.

(10)

Theorem 4.1. All the kernels Gi in the system (7), there are Hi > 0, i = 1, . . . , 7, therefore,

∥G1(ζ,S(ζ))− G1(ζ,S1(ζ))∥ ≤ H1∥S(ζ)− S1(ζ)∥,
∥G2(ζ,M(ζ))− G2(ζ,M1(ζ))∥ ≤ H2∥M(ζ)−M1(ζ)∥,
∥G3(ζ,E(ζ))− G3(ζ,E1(ζ))∥ ≤ H3∥E(ζ)−E1(ζ)∥,
∥G4(ζ,A(ζ))− G4(ζ,A1(ζ))∥ ≤ H4∥A(ζ)−A1(ζ)∥,
∥G5(ζ, I(ζ))− G5(ζ, I1(ζ))∥ ≤ H5∥I(ζ)− I1(ζ)∥,

∥G6(ζ,T(ζ))− G6(ζ,T1(ζ))∥ ≤ H6∥T(ζ)−T1(ζ)∥,
∥G7(ζ,R(ζ))− G7(ζ,R1(ζ))∥ ≤ H7∥R(ζ)−R1(ζ)∥,

and contraction for 0 ≤ Hi < 1, i = 1, . . . , 7.

Proof. S and S1 be two continuous functions are considered, then by triangular inequality, we
have,

∥G1(ζ,S(ζ))− G1(ζ,S1(ζ))∥ = ∥αϱ(I+ βϱT)(S(ζ)− S1(ζ))− ηϱ(S(ζ)− S1(ζ))∥
≤ ∥(αϱ(d1 + βϱd2)− ηϱ)(S(ζ)− S1(ζ)∥
≤ |αϱ(d1 + βϱd2)− ηϱ|∥S(ζ)− S1(ζ)∥
≤ H1∥S(ζ)− S1(ζ)∥, (11)

where H1 = |αϱ(d1 + βϱd2) − ηϱ|, ∥I(ζ)∥ ≤ d1, ∥T(ζ)∥ ≤ d2. Therefore G1 satisfies the Lipschitz
condition. And if 0 ≤ H1 < 1, then it is also a contraction.

In the similar way, we have

∥G2(ζ,M(ζ))− G2(ζ,M1(ζ))∥ ≤ H2∥M(ζ)−M1(ζ)∥,
∥G3(ζ,E(ζ))− G3(ζ,E1(ζ))∥ ≤ H3∥E(ζ)−E1(ζ)∥,
∥G4(ζ,A(ζ))− G4(ζ,A1(ζ))∥ ≤ H4∥A(ζ)−A1(ζ)∥,
∥G5(ζ, I(ζ))− G5(ζ, I1(ζ))∥ ≤ H5∥I(ζ)− I1(ζ)∥,

∥G6(ζ,T(ζ))− G6(ζ,T1(ζ))∥ ≤ H6∥T(ζ)−T1(ζ)∥,
∥G7(ζ,R(ζ))− G7(ζ,R1(ζ))∥ ≤ H7∥R(ζ)−R1(ζ)∥,
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whereH2 = k1, H3 = k2, H4 = k3, H5 = k4, H6 = k5, H7 = k6.

Hence all Gi satisfy the Lipschitz condition, and they are also contraction if Hi ∈ [0, 1),
i = 2, . . . , 7. From (10), the recursive pattern for S, M, E, A, I, T, R can be written as,

Sn(ζ) =
1

Γ(ϱ)

∫ ζ

0

(ζ − ϑ)ϱ−1

[
G1(ϑ,Sn−1(ϑ))

]
dϑ,

Mn(ζ) =
1

Γ(ϱ)

∫ ζ

0

(ζ − ϑ)ϱ−1

[
G2(ϑ,Mn−1(ϑ))

]
dϑ,

En(ζ) =
1

Γ(ϱ)

∫ ζ

0

(ζ − ϑ)ϱ−1

[
G3(ϑ,En−1(ϑ))

]
dϑ,

An(ζ) =
1

Γ(ϱ)

∫ ζ

0

(ζ − ϑ)ϱ−1

[
G4(ϑ,An−1(ϑ))

]
dϑ,

In(ζ) =
1

Γ(ϱ)

∫ ζ

0

(ζ − ϑ)ϱ−1

[
G5(ϑ, In−1(ϑ))

]
dϑ,

Tn(ζ) =
1

Γ(ϱ)

∫ ζ

0

(ζ − ϑ)ϱ−1

[
G6(ϑ,Tn−1(ϑ))

]
dϑ,

Rn(ζ) =
1

Γ(ϱ)

∫ ζ

0

(ζ − ϑ)ϱ−1

[
G7(ϑ,Rn−1(ϑ))

]
dϑ,

with initial conditions,{
S0(ζ) = S(0) ≥ 0, M0(ζ) = M(0) ≥ 0, E0(ζ) = E(0) ≥ 0, A0(ζ) = A(0) ≥ 0,

I0(ζ) = I(0) ≥ 0, T0(ζ) = T(0) ≥ 0, R0(ζ) = R(0) ≥ 0.

The differences between the successive terms are shown below,

Υ1n(ζ) = Sn(ζ)− Sn−1(ζ) =
1

Γ(ϱ)

∫ ζ

0

(ζ − ϑ)ϱ−1

[
G1(ϑ,Sn−1(ϑ))− G1(ϑ,Sn−2(ϑ))

]
dϑ,

Υ2n(ζ) = Mn(ζ)−Mn−1(ζ) =
1

Γ(ϱ)

∫ ζ

0

(ζ − ϑ)ϱ−1

[
G2(ϑ,Mn−1(ϑ))− G2(ϑ,Mn−2(ϑ))

]
dϑ,

Υ3n(ζ) = En(ζ)−En−1(ζ) =
1

Γ(ϱ)

∫ ζ

0

(ζ − ϑ)ϱ−1

[
G3(ϑ,En−1(ϑ))− G3(ϑ,En−2(ϑ))

]
dϑ,

Υ4n(ζ) = An(ζ)−An−1(ζ) =
1

Γ(ϱ)

∫ ζ

0

(ζ − ϑ)ϱ−1

[
G4(ϑ,An−1(ϑ))− G4(ϑ,An−2(ϑ))

]
dϑ,

Υ5n(ζ) = In(ζ)− In−1(ζ) =
1

Γ(ϱ)

∫ ζ

0

(ζ − ϑ)ϱ−1

[
G5(ϑ, In−1(ϑ))− G5(ϑ, In−2(ϑ))

]
dϑ,

Υ6n(ζ) = Tn(ζ)−Tn−1(ζ) =
1

Γ(ϱ)

∫ ζ

0

(ζ − ϑ)ϱ−1

[
G6(ϑ,Tn−1(ϑ))− G6(ϑ,Tn−2(ϑ))

]
dϑ,

Υ7n(ζ) = Rn(ζ)−Rn−1(ζ) =
1

Γ(ϱ)

∫ ζ

0

(ζ − ϑ)ϱ−1

[
G7(ϑ,Rn−1(ϑ))− G7(ϑ,Rn−2(ϑ))

]
dϑ.

(12)

Applying the norm to both sides of (12), and by triangular inequality, we have,

∥Υ1n(ζ)∥ = ∥Sn(ζ)− Sn−1(ζ)∥ =

∥∥∥∥ 1

Γ(ϱ)

∫ ζ

0

(ζ − ϑ)ϱ−1

[
G1(ϑ,Sn−1(ϑ))− G1(ϑ,Sn−2(ϑ))

]
dϑ

∥∥∥∥
≤ 1

Γ(ϱ)

∫ ζ

0

∥∥∥∥(ζ − ϑ)ϱ−1

[
G1(ϑ,Sn−1(ϑ))− G1(ϑ,Sn−2(ϑ))

]∥∥∥∥dϑ.
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As the kernel compliant the Lipschitz condition, then we have,

∥Υ1n(ζ)∥ ≤ H1

Γ(ϱ)

∫ ζ

0

∥Υ1(n−1)(ϑ)∥dϑ. (13)

In the same way, we get, 

∥Υ2n(ζ)∥ ≤ H2

Γ(ϱ)

∫ ζ

0

∥Υ2(n−1)(ϑ)∥dϑ,

∥Υ3n(ζ)∥ ≤ H3

Γ(ϱ)

∫ ζ

0

∥Υ3(n−1)(ϑ)∥dϑ,

∥Υ4n(ζ)∥ ≤ H4

Γ(ϱ)

∫ ζ

0

∥Υ4(n−1)(ϑ)∥dϑ,

∥Υ5n(ζ)∥ ≤ H5

Γ(ϱ)

∫ ζ

0

∥Υ5(n−1)(ϑ)∥dϑ,

∥Υ6n(ζ)∥ ≤ H6

Γ(ϱ)

∫ ζ

0

∥Υ6(n−1)(ϑ)∥dϑ,

∥Υ7n(ζ)∥ ≤ H7

Γ(ϱ)

∫ ζ

0

∥Υ7(n−1)(ϑ)∥dϑ.

(14)

Theorem 4.2. Let W =
ζ0

Γ(ϱ)
Hi, ∀ i = 1, . . . , 7, then aforementioned Model (2) has one solution for

finite time ζ0, if 1−W > 0.

Proof. (13) and (14) are considered and by recursive principle [23], we can write,

∥Υin(ζ)∥ ≤ ∥H(0)∥
[

Hi

Γ(ϱ)

]n
, i = 1, . . . , 7. (15)

Thus, the proposed Model (2) has at least a solution and also continuous.

Now to show that the above functions are the solutions to the aforementioned Model (2). We
consider that,

H(ζ)−H(0) = Hn(ζ)−Fin(ζ),

where Fin (i = 1, . . . , 7.) are remainders terms after n iterations.

By using triangular inequality, we get,

∥F1n(ζ)∥ =

∥∥∥∥ 1

Γ(ϱ)

∫ ζ

0

(ζ − ϑ)ϱ−1

[
G1(ϑ,S(ϑ))− G1(ϑ,Sn−1(ϑ))

]
dϑ

∥∥∥∥
≤ 1

Γ(ϱ)

∫ ζ

0

(ζ − ϑ)ϱ−1

[
∥G1(ϑ,S(ϑ))− G1(ϑ,Sn−1(ϑ))∥

]
dϑ

≤ ζ

Γ(ϱ)
H1∥S− Sn−1∥.

After using recursion approaches, which gives,

∥F1n(ζ)∥ ≤ (
ζ

Γ(ϱ)
H1)

n+1c.

451



R. Nawaz and N. M. A. Nik Long Malaysian J. Math. Sci. 19(2): 443–469(2025) 443 - 469

For ζ = ζ0, we have,

∥F1n(ζ0)∥ ≤ (
ζ0

Γ(ϱ)
H1)

n+1c,

therefore,

∥F1n(ζ)∥ → 0, as n→ ∞, if ζ0
Γ(ϱ)

H1 < 1.

In the same way, we have,

∥Fin(ζ)∥ → 0, as n→ ∞, i = 2, . . . , 7.

Hence, Model (2) has one solution.

Theorem 4.3. If (1−W) > 0, then the Model (2) has atmost one unique solution, where,

W =
ζ

Γ(ϱ)
Hi ∀ i = 1, . . . , 7.

Proof. Consider S and S1 be the two different solutions of the proposed Model (2), then we get,

S(ζ)− S1(ζ) =
1

Γ(ϱ)

∫ ζ

0

(ζ − ϑ)ϱ−1

[
G1(ϑ,S(ϑ))− G1(ϑ,S1(ϑ))

]
dϑ. (16)

It is clear that,

∥S(ζ)− S1(ζ)∥ ≥ 0.

Applying norm on (16) and Lipschitz condition of the kernel, we have,

∥S(ζ)− S1(ζ)∥ ≤ 1

Γ(ϱ)

∫ ζ

0

(ζ − ϑ)ϱ−1

[
∥G1(ϑ,S(ϑ))− G1(ϑ,S1(ϑ))∥

]
dϑ,

≤ ζ

Γ(ϱ)
H1

[
∥S(ζ)− S1(ζ)∥

]
,

then,

(1− ζ

Γ(ϱ)
H1)

[
∥S(ζ)− S1(ζ)∥

]
≤ 0.

Since,

(1− ζ

Γ(ϱ)
H1) > 0,

we have,

∥S(ζ)− S1(ζ)∥ = 0,

which give,

S(ζ) = S1(ζ).

In the similar way , we obtain,

M(ζ) = M1(ζ), E(ζ) = E1(ζ), A(ζ) = A1(ζ), I(ζ) = I1(ζ), T(ζ) = T1(ζ), R(ζ) = R1(ζ).

Thus, the Model (2) has atmost one unique solution.
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5 Fundamental Characteristics

5.1 Invariant region

Let Ω = {(S,M,E,A, I,T,R) ∈ R7
+} be the feasible region, and let the functions on the right

side of Model (2) be continuous on R7
+. The net population is obtained by adding the all classes.

CDϱN(ζ) = CDϱS+ CDϱM+ CDϱE+ CDϱA+ CDϱI+ CDϱT+ CDϱR,

which gives,
CDϱN(ζ) + ηϱN(ζ) ≤ Λϱ. (17)

Using (17) and the Laplace transform, we obtain,

N(ζ) ≤ Λϱ

ηϱ
, ∀ ζ.

Thus, the solutions of the Model (2) restricted to the domain Ω. Hence, Ω is positively invariant.

5.2 Positivity and boundedness

To demonstrate that all solutions to the aforementionedModel (2) are positive, we notice that,

CDϱ
0S = Λϱ + ρϱM+ λϱE+ σϱR > 0,

CDϱ
0M = πϱΛϱ > 0,

CDϱ
0E = αϱS(I+ βϱT) ≥ 0,

CDϱ
0A = r1λ

ϱE ≥ 0,
CDϱ

0I = ωϱE+ θϱA ≥ 0,
CDϱ

0T = ξϱI ≥0,
CDϱ

0R = γϱE+ µϱT ≥ 0.

According to Corollary 3.1, the result is in R7
+ i.e.,

Ω = {(S,M,E,A, I,T,R) ∈ R7
+ | (S+M+E+A+ I+T+R) ≥ 0}.

Thus, the Model (2) solutions are positive and bounded in the aforementioned feasible region Ω.

5.3 Equilibrium points of the Model (2)

In this section, we will compute the equilibrium points of Model (2). The equilibrium points
for the system are derived as,

(1− πϱ)Λϱ + ρϱM+ (1− r1)λ
ϱE+ σϱR− αϱS(I+ βϱT)− ηϱS = 0,

πϱΛϱ − k1M = 0,

αϱS(I+ βϱT)− k2E = 0,

r1λ
ϱE− k3A = 0,

ωϱE+ θϱA− k4I = 0,

ξϱI− k5T = 0,

γϱE+ µϱT− k6R = 0.

(18)
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Put E = I = T = A = 0 in (18), after simplification we have,

Eo =

(
(k1(1− πϱ) + ρϱπϱ)Λϱ

ηϱk1
,
πϱΛϱ

k1
, 0, 0, 0, 0

)
.

A disease endemic equilibrium Ee exists. Let S = S∗, M = M∗, E = E∗, A = A∗, I = I∗, T = T∗

andR = R∗ in (18), then we have,

(1− πϱ)Λϱ + ρϱM∗ + (1− r1)λ
ϱE∗ + σϱR∗ − αϱS∗(I∗ + βϱT∗)− ηϱS∗ = 0,

πϱΛϱ − k1M
∗ = 0,

αϱS∗(I∗ + βϱT∗)− k2E
∗ = 0,

r1λ
ϱE∗ − k3A

∗ = 0,

ωϱE∗ + θϱA∗ − k4I
∗ = 0,

ξϱI∗ − k5T
∗ = 0,

γϱE∗ + µϱT∗ − k6R
∗ = 0.

After simplify, we get,

S∗ =
k2k3k4k5

Π
, M∗ =

πϱΛϱ

k1
,

A∗ =
ηϱr1λ

ϱk2k3k
2
4k

2
5k6(R0 − 1)

ΠΩ
, I∗ =

ηϱk2k3k4k
2
5k6(R0 − 1)

ΠΩ
,

T∗ =
ηϱξϱk2k3k4k5k6(R0 − 1)

ΠΩ
, E∗ =

ηϱk2k
2
3k

2
4k

2
5k6(R0 − 1)

ΠΩ
,

R∗ =
ηϱk2k3k4k5(γ

ϱk3k4k5 + νϱξϱ(ωϱk3 + θϱr1λ
ϱ))(R0 − 1)

ΠΩ
,

where,

Ω = (λϱ(1− r1)− k2)k3k4k5k6 + σϱ(γϱk3k4k5 + µϱξϱ(ωϱk3 + θϱr1λ
ϱ)),

Π = αϱ(k5 + βϱξϱ)(ωϱk3 + θϱr1λ
ϱ).

5.3.1 Basic reproduction numberR0

The givenModel (2)R0 is calculated using the next–generation matrix technique [42]. Let the
infected system (E,A, I,T)T , then the Jacobian matrices computed at E0 are given as,

F(E0) =


0 0

(k1(1− πϱ) + ρϱπϱ)αϱΛϱ

ηϱk1

(k1(1− πϱ) + ρϱπϱ)αϱβϱΛϱ

ηϱk1
0 0 0 0
0 0 0 0
0 0 0 0

 ,

V =


k2 0 0 0

−r1λϱ k3 0 0
−ωϱ −θϱ k4 0
0 0 −ξϱ k5

 .
After simplifying F(E0)V

−1,we get,

R0 =
(k1 − πϱk1 + ρϱπϱ)(k5 + βϱξϱ)αϱ(ωϱk3 + θϱλϱr1)Λ

ϱ

ηϱk1k2k3k4k5
.
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6 Hyers–Ulam Stability

The Hyers–Ulam stability analysis of fractional–order systems is a critical aspect of ensur-
ing that mathematical models behave reliably, even under small perturbations. This is espe-
cially important in biological and epidemiological applications, where accurate predictions of
disease dynamics are essential for effective public health interventions. By ensuring the stabil-
ity of fractional–order models, such as those used in TB transmission, researchers can increase
confidence in their models’ predictions and provide more reliable recommendations for disease
control strategies. This section examines theHyers–Ulam stability of themodel (2). The necessary
inequalities are defined below.
Definition 6.1. If there are constants Ki > 0, i ∈ N7

1 satisfying; for every ϵi > 0, i ∈ N7
1,∣∣∣∣CDϱ

0S(ζ)− G1(ζ,S)

∣∣∣∣ ≤ ϵ1,∣∣∣∣CDϱ
0M(ζ)− G2(ζ,M)

∣∣∣∣ ≤ ϵ2,∣∣∣∣CDϱ
0E(ζ)− G3(ζ,E)

∣∣∣∣ ≤ ϵ3,∣∣∣∣CDϱ
0A(ζ)− G4(ζ,A)

∣∣∣∣ ≤ ϵ4,∣∣∣∣CDϱ
0I(ζ)− G5(ζ, I)

∣∣∣∣ ≤ ϵ5,∣∣∣∣CDϱ
0T(ζ)− G6(ζ,T)

∣∣∣∣ ≤ ϵ6,∣∣∣∣CDϱ
0R(ζ)− G7(ζ,R)

∣∣∣∣ ≤ ϵ7,

(19)

and TBModel (2) posses a solution (S,M,E,A, I,T,R) satisfying ∥S−S∥ ≤ K1ϵ1, ∥M−M∥ ≤ K2ϵ2,
∥E−E∥ ≤ K3ϵ3, ∥A−A∥ ≤ K4ϵ4, ∥I − I∥ ≤ K5ϵ5, ∥T −T∥ ≤ K6ϵ6, ∥R−R∥ ≤ K7ϵ7, then proposed
Model (2) is Hyers–Ulam stable.
Remark 6.1. Consider S(ζ), M(ζ), E(ζ), A(ζ), I(ζ), T(ζ), and R(ζ) are the solutions of inequalities
(19), and if there are hi, i = 1, . . . , 7, such that |hi(ζ)| < ϵi we have,

CDϱ
0S(ζ) = G1(ζ,S) + h1(ζ),

CDϱ
0M(ζ) = G2(ζ,M) + h2(ζ),

CDϱ
0E(ζ) = G3(ζ,E) + h3(ζ),

CDϱ
0A(ζ) = G4(ζ,A) + h4(ζ),

CDϱ
0I(ζ) = G5(ζ, I) + h5(ζ),

CDϱ
0T(ζ) = G6(ζ,T) + h6(ζ),

CDϱ
0R(ζ) = G7(ζ,R) + h7(ζ).

(20)

Theorem 6.1. Let ζ

Γ(ϱ)
γi < 1, ∀ i = 1, . . . , 7, holds. Then the proposed TB Model (2) is Hyers–Ulam

stable.

Proof. Let ϵ1 > 0 and the function S be continuous such that,∣∣CDϱ
0S(ζ)− G1(ζ,S)

∣∣ ≤ ϵ1.
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From Remark 6.1, we obtain,
CDϱ

0S(ζ) = G1(ζ,S) + h1(ζ).

Consequently,

S(ζ) = S(0) +
1

Γ(ϱ)

∫ ζ

0

(ζ − ϑ)ϱ−1[G1(ϑ,S(ϑ))]dϑ+
1

Γ(ϱ)

∫ ζ

0

(ζ − ϑ)ϱ−1[h1(ϑ)]dϑ.

Assume that S1(ζ) be a unique solution of the model, then we have,

S1(ζ) = S1(0) +
1

Γ(ϱ)

∫ ζ

0

(ζ − ϑ)ϱ−1[G1(ϑ,S1(ϑ))]dϑ,

and,∥∥∥∥S− S1

∥∥∥∥ ≤ 1

Γ(ϱ)

∫ ζ

0

(ζ − ϑ)ϱ−1

∥∥∥∥G1(ϑ,S(ϑ))− G1(ϑ,S1(ϑ))

∥∥∥∥dϑ+
1

Γ(ϱ)

∫ ζ

0

(ζ − ϑ)ϱ−1

∥∥∥∥h1(ϑ)∥∥∥∥dϑ,
≤ ζ

Γ(ϱ)
γ1

∥∥∥∥S− S1

∥∥∥∥+
ζ

Γ(ϱ)
ϵ1.

Thus,

∥S− S1∥ ≤

[
ζ

Γ(ϱ)

]
[
1− ζγ1

Γ(ϱ)

]ϵ1,
then,

∥S− S1∥ ≤K1ϵ1,

where K1 =

[
ζ

Γ(ϱ)

]
[
1− ζγ1

Γ(ϱ)

] .
Similarly,

∥M−M1∥ ≤ K2ϵ2, ∥E−E1∥ ≤ K3ϵ3, ∥A−A1∥ ≤ K4ϵ4,

∥I− I1∥ ≤ K5ϵ5, ∥T−T1∥ ≤ K6ϵ6, ∥R−R1∥ ≤ K7ϵ7,

where Ki =

[
ζ

Γ(ϱ)

]
[
1− ζγi

Γ(ϱ)

] , i = 2, . . . , 7.

Hence, proposed Model (2) is Hyers–Ulam stable.

7 Sensitivity Analysis

This study examines how changing parameters affect R0 and the potential for disease control
and elimination. To calculate the partial derivatives of R0, use Definition 3.2 with regard to the
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parameters π, µ, ψ1, ψ2, ξ, γ, λ, ρ, θ, ω, α, Λ and β. A positive (negative) index indicates that
an increase in the parameter value causes a rise (reduction) in R0 [38].

The sensitivity index R0 for the model parameters is calculated by,

ΨR0

ξϱ = −α
ϱΛϱAC(B − k4β

ϱ)

k4ηϱE
< 0, ΨR0

θϱ = −α
ϱΛϱAB(C − λϱr1k3)

k3ηϱE
< 0, ΨR0

βϱ =
αϱξϱΛϱAC

ηϱE
> 0,

ΨR0

ψϱ
2
= −α

ϱΛϱAC(k5 −B)

k5ηϱE
< 0, ΨR0

µϱ = −α
ϱΛϱAC(k5 −B)

k5ηϱE
< 0, ΨR0

γϱ = −α
ϱΛϱABC

k2ηϱE
< 0,

ΨR0

λϱ =
αϱΛϱAB(θϱr1k2 − C)

k2ηϱE
> 0, ΨR0

ρϱ =
αϱΛϱBC(k1 −A)

k1ηϱE
> 0, ΨR0

αϱ =
ΛϱABC

ηϱE
> 0,

ΨR0
πϱ = −α

ϱΛϱBC(k1 − ρϱ)

ηϱE
< 0, ΨR0

Λϱ =
αϱABC

k2ηϱE
> 0, ΨR0

ψϱ
1
= −α

ϱΛϱABC

k4ηϱE
< 0,

ΨR0
ηϱ =− αϱΛϱ

[
ABC(E + η(k3k4k5(k1 + k2) + k1k2(k3k4 + k3k5 + k4k5)))

ηϱE2
−

(A(ωϱB + C) + (1− π)BC))

ηϱE

]
< 0, ΨR0

ωϱ =
αϱΛϱAB(k3k2 − C)

ηϱE
> 0,

where A = k1 − πϱk1 + ρϱπϱ, B = k5 + βϱξϱ, C = ωϱk3 + θϱλϱr1, and E = k1k2k3k4k5.

7.1 Impact of θ on the infected population class (I)

Figure 2 shows that the effects on the TB disease through parameters variation. The obtained
graph presents the number of infected individuals using the parameter value (dot line) described
in Table 1 and the corresponding curves with a specific parameter value increases of 10% (solid
line), respectively.

Figure 2: Effects of θ on the infected class (I).

It means that the small changes from 0.904 to 1 to the value of θ, resulting the small increment
in the infected population. After 50 days, both graphs shows stability and convergence.
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Table 1: Parameters values of the proposed model.

Parameter Description Value Source
π Rate of immunized at birth 0.065 [32]
Λ Rate of procurement 1 [32]
ρ Fraction of weaning off the medication 0.0256 [32]
η Natural death rate 0.021 [32]
β Rate of infection person from I enter into T 0.1 [3]
r1 Rate of progression from E enter into A 0.23 [3]
λ Latency or incubation period 0.811 [32]
θ Rate of individuals from A to I 0.904 [32]
α Rate of effective contact 0.7 [3]
σ Rate of recovered class being suspected 0.5 assumed
γ Rate of therapeutic efficacy of contagious predisposition 0.0342 [32]
ω Rate of collapse of innate TB into extremely contagious TB 0.124 [32]
ξ Rate of effective remedy of TB patients I 0.2 [3]
ψ1 Disease induced death rate in I 0.15 [3]
ψ2 Disease induced death rate in T 0.05 [3]
µ Rate of individuals from T enter into R 0.1 [32]
N1 7

N2 5

N3 2

N4 1

N5 1

N6 0

N7 0

8 Numerical Analysis

8.1 The construction of solution for Model (2) by HPM

Apply the HPM [24] on the Model (2) yields;

(1−HP)[
CDϱS(ζ)− CDϱS0(ζ)] +HP [

CDϱS(ζ)] = HP [(1− πϱ)Λϱ + ρϱM

+(1− r1)λ
ϱE+ σϱR− αϱS(I+ βϱT)− ηϱS],

(1−HP)[
CDϱM(ζ)− CDϱM0(ζ)] +HP [

CDϱM(ζ)] = HP [π
ϱΛϱ − k1M],

(1−HP)[
CDϱE(ζ)− CDϱE0(ζ)] +HP [

CDϱE(ζ)] = HP [α
ϱS(I+ βϱT)− k2E],

(1−HP)[
CDϱA(ζ)− CDϱA0(ζ)] +HP [

CDϱA(ζ)] = HP [r1λ
ϱE− k3A],

(1−HP)[
CDϱI(ζ)− CDϱI0(ζ)] +HP [

CDϱI(ζ)] = HP [ω
ϱE+ θϱA− k4I],

(1−HP)[
CDϱT(ζ)− CDϱT0(ζ)] +HP [

CDϱT(ζ)] = HP [ξ
ϱI− k5T],

(1−HP)[
CDϱR(ζ)− CDϱR0(ζ)] +HP [

CDϱR(ζ)] = HP [γ
ϱE+ µϱT− k6R].

(21)
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Let, 

S = S0 +HPS1 +HP
2S2 + · · ·

M = M0 +HPM1 +HP
2M2 + · · ·

E = E0 +HPE1 +HP
2E2 + · · ·

A = A0 +HPA1 +HP
2A2 + · · ·

I = I0 +HPI1 +HP
2I2 + · · ·

T = T0 +HPT1 +HP
2T2 + · · ·

R = R0 +HPR1 +HP
2R2 + · · ·

(22)

Substitute HP = 0 in the aforementioned system (21). Then we get,

CDϱS(ζ)− CDϱS0(ζ) = 0,
CDϱM(ζ)− CDϱM0(ζ) = 0,
CDϱE(ζ)− CDϱE0(ζ) = 0,
CDϱA(ζ)− CDϱA0(ζ) = 0,
CDϱI(ζ)− CDϱI0(ζ) = 0,

CDϱT(ζ)− CDϱT0(ζ) = 0,
CDϱR(ζ)− CDϱR0(ζ) = 0.

(23)

Substitute (23) into (21) and comparing terms with the power of HP yields;

S0(ζ) = N1, M0(ζ) = N2, E0(ζ) = N3, A0(ζ) = N4,

I0(ζ) = N5, T0(ζ) = N6, R0(ζ) = N7.

Similarly,

S1(ζ) = [(1− πϱ)Λϱ + ρϱN2 + (1− r1)λ
ϱN3 + σϱN7 − αϱN1(N5 + βϱN6)− ηϱN1]

ζϱ

Γ(ϱ+ 1)
,

M1(ζ) = [πϱΛϱ − k1N2]
ζϱ

Γ(ϱ+ 1)
,

E1(ζ) = [αϱN1(N5 + βϱN6)− k2N3]
ζϱ

Γ(ϱ+ 1)
,

A1(ζ) = [r1λ
ϱN3 − k3N4]

ζϱ

Γ(ϱ+ 1)
,

I1(ζ) = [ωϱN3 + θϱN4 − k4N5]
ζϱ

Γ(ϱ+ 1)
,

T1(ζ) = [ξϱN5 − k5N6]
ζϱ

Γ(ϱ+ 1)
,

R1(ζ) = [γϱN3 + µϱN6 − k6N7]
ζϱ

Γ(ϱ+ 1)
.
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S2(ζ) =
(1− πϱ)Λϱζϱ

Γ(ϱ+ 1)
+ [ρϱv11 + (1− r1)λ

ϱw11 + σϱa11 − αϱ(N1(y11 + βϱz11) + u11N5

+ βϱu11N6)− ηϱu11]
ζ2ϱ

Γ(2ϱ+ 1)
,

M2(ζ) =
πϱΛϱζϱ

Γ(ϱ+ 1)
− [k1v11]

ζ2ϱ

Γ(2ϱ+ 1)
,

E2(ζ) = [αϱ(N1(y11 + βϱz11) + u11N5 + βϱu11N6)− k2w11]
ζ2ϱ

Γ(2ϱ+ 1)
,

A2(ζ) = [r1λ
ϱw11 − k3x11]

ζ2ϱ

Γ(2ϱ+ 1)
,

I2(ζ) = [ωϱw11 + θϱx11 − k4y11]
ζ2ϱ

Γ(2ϱ+ 1)
,

T2(ζ) = [ξϱy11 − k5z11]
ζ2ϱ

Γ(2ϱ+ 1)
,

R2(ζ) = [γϱw11 + µϱz11 − k6a11]
ζ2ϱ

Γ(2ϱ+ 1)
.

After substitutionHP = 1 in (22), we get,

S(ζ) = S0 + [(1− πϱ)Λϱ + u11]
ζϱ

Γ(ϱ+ 1)
+ [ρϱv11 + (1− r1)λ

ϱw11 + σϱa11

− αϱ(N1(y11 + βϱz11) + u11N5 + βϱu11N6)− ηϱu11]
ζ2ϱ

Γ(2ϱ+ 1)
+ . . .

M(ζ) = M0 + [πϱΛϱ + v11]
ζϱ

Γ(ϱ+ 1)
− [k1v11]

ζ2ϱ

Γ(2ϱ+ 1)
+ . . .

E(ζ) = E0 +
w11ζ

ϱ

Γ(ϱ+ 1)
+ [αϱ(N1(y11 + βϱz11) + u11N5 + βϱu11N6)− k2w11]

ζ2ϱ

Γ(2ϱ+ 1)
+ . . .

A(ζ) = A0 +
x11ζ

ϱ

Γ(ϱ+ 1)
+ [r1λ

ϱw11 − k3x11]
ζ2ϱ

Γ(2ϱ+ 1)
+ . . .

I(ζ) = I0 +
y11ζ

ϱ

Γ(ϱ+ 1)
+ [ωϱw11 + θϱx11 − k4y11]

ζ2ϱ

Γ(2ϱ+ 1)
+ . . .

T(ζ) = T0 +
z11ζ

ϱ

Γ(ϱ+ 1)
+ [ξϱy11 − k5z11]

ζ2ϱ

Γ(2ϱ+ 1)
+ . . .

R(ζ) = R0 +
a11ζ

ϱ

Γ(ϱ+ 1)
+ [γϱw11 + µϱz11 − k6a11]

ζ2ϱ

Γ(2ϱ+ 1)
+ . . .

The unknown values of the above equations are,
u11 = (1− πϱ)Λϱ + ρϱN2 + (1− r1)λ

ϱN3 + σϱN7 − αϱN1(N5 + βϱN6)− ηϱN1,

v11 = πϱΛϱ − k1N2, w11 = αϱN1(N5 + βϱN6)− k2N3, x11 = r1λ
ϱN3 − k3N4,

y11 = ωϱN3 + θϱN4 − k4N5, z11 = ξϱN5 − k5N6, a11 = γϱN3 + µϱN6 − k6N7.
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8.2 The construction of solution for Model (2) by FDTM

In this section, we apply FDTM to solve the proposed Model (2) with time ζ. Transforming
the proposed model by Theorems 3.1, 3.2, 3.3 and 3.4, we have,

S(τ + ϱm) =
Γ(1 + τ

m )

Γ(ϱ+ 1 + τ
m )

[(1− πϱ)Λϱ + ρϱM(τ) + (1− r1)λ
ϱE(τ) + σϱR(τ)

− αϱ
τ∑

n=0

S(τ)I(τ − n)− αϱβϱ
τ∑

n=0

S(τ)T(τ − n)− ηϱS(τ)],

M(τ + ϱm) =
Γ(1 + τ

m )

Γ(ϱ+ 1 + τ
m )

[πϱΛϱ − k1M(τ)],

E(τ + ϱm) =
Γ(1 + τ

m )

Γ(ϱ+ 1 + τ
m )

[αϱ
τ∑

n=0

S(τ)I(τ − n) + αϱβϱ
τ∑

n=0

S(τ)T(τ − n)− k2E(τ)],

A(τ + ϱm) =
Γ(1 + τ

m )

Γ(ϱ+ 1 + τ
m )

[r1λ
ϱE(τ)− k3A(τ)],

I(τ + ϱm) =
Γ(1 + τ

m )

Γ(ϱ+ 1 + τ
m )

[ωϱE(τ) + θϱA(τ)− k4I(τ)],

T(τ + ϱm) =
Γ(1 + τ

m )

Γ(ϱ+ 1 + τ
m )

[ξϱI(τ)− k5T(τ)],

R(τ + ϱm) =
Γ(1 + τ

m )

Γ(ϱ+ 1 + τ
m )

[γϱE(τ) + µϱT(τ)− k6R(τ)],

(24)

where τ is the fraction of order ϱ. The initial conditions are S(0) = N1,M(0) = N2, E(0) = N3,
A(0) = N4, I(0) = N5, T(0) = N6, and R(0) = N7. The fractional differential transform of
S(τ + ϱm),M(τ + ϱm), E(τ + ϱm),A(τ + ϱm), I(τ + ϱm), T(τ + ϱm), andR(τ + ϱm) is defined
as: When ζ0 is taken as zero, the given function S(ζ), M(ζ), E(ζ), A(ζ), I(ζ), T(ζ) and R(ζ) is
declared by the following and the above equation can be written in the form,

S(ζ) =

∞∑
τ=0

S(τ)ζτϱ, M(ζ) =

∞∑
τ=0

M(τ)ζτϱ, E(ζ) =

∞∑
τ=0

E(τ)ζτϱ,

A(ζ) =

∞∑
τ=0

A(τ)ζτϱ, I(ζ) =

∞∑
τ=0

I(τ)ζτϱ, T(ζ) =

∞∑
τ=0

T(τ)ζτϱ,

R(ζ) =
∞∑
τ=0

R(τ)ζτϱ.

(25)

By solving (24) and (25) for S(τ +ϱm),M(τ +ϱm),E(τ +ϱm),A(τ +ϱm), I(τ +ϱm),T(τ +ϱm),
andR(τ + ϱm) up to order 4, we get the function of S(ζ),M(ζ), E(ζ),A(ζ), I(ζ), T(ζ), andR(ζ)
respectively,

S(ζ) =

3∑
τ=0

S(τ)ζτϱ, M(ζ) =

3∑
τ=0

M(τ)ζτϱ, E(ζ) =

3∑
τ=0

E(τ)ζτϱ,

A(ζ) =

3∑
τ=0

A(τ)ζτϱ, I(ζ) =

3∑
τ=0

I(τ)ζτϱ, T(ζ) =

3∑
τ=0

T(τ)ζτϱ,

R(ζ) =

3∑
τ=0

R(τ)ζτϱ.

(26)
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From (24), (25) and (26), we have,

S(ζ) =S(0) +
1

Γ(ϱ+ 1)
[(1− πϱ)Λϱ + ρϱM(0) + (1− r1)Λ

ϱE(0) + σϱR(0)− αϱS(0)I(0)

− αϱβϱS(0)T(0)− ηϱS(0)]ζϱ +
Γ(1 + 1

m )

Γ(ϱ+ 1 + 1
m )

[(1− πϱ)Λϱ + ρϱM(1) + (1− r1)Λ
ϱE(1)

+ σϱR(1)− αϱ
1∑

n=0

S(1)I(1− n)− αϱβϱ
1∑

n=0

S(1)T(1− n)− ηϱS(1)]ζ2ϱ

+
Γ(1 + 2

m )

Γ(ϱ+ 1 + 2
m )

[(1− πϱ)Λϱ + ρϱM(2) + (1− r1)Λ
ϱE(2) + σϱR(2)

− αϱ
2∑

n=0

S(2)I(2− n)− αϱβϱ
2∑

n=0

S(2)T(2− n)− ηϱS(2)]ζ3ϱ

+
Γ(1 + 3

m )

Γ(ϱ+ 1 + 3
m )

[(1− πϱ)Λϱ + ρϱM(3) + (1− r1)Λ
ϱE(3) + σϱR(3)

− αϱ
3∑

n=0

S(3)I(3− n)− αϱβϱ
3∑

n=0

S(3)T(3− n)− ηϱS(3)]ζ4ϱ.

M(ζ) =M(0) +
1

Γ(ϱ+ 1)
[πϱΛϱ − k1M(0)]ζϱ +

Γ(1 + 1
m )

Γ(ϱ+ 1 + 1
m )

[πϱΛϱ − k1M(1)]ζ2ϱ

+
Γ(1 + 2

m )

Γ(ϱ+ 1 + 2
m )

[πϱΛϱ − k1M(2)]ζ3ϱ +
Γ(1 + 3

m )

Γ(ϱ+ 1 + 3
m )

[πϱΛϱ − k1M(3)]ζ4ϱ.

E(ζ) =E(0) +
1

Γ(ϱ+ 1)
[αϱS(0)I(0) + αϱβϱS(0)T(0)− k2E(0)]ζϱ

+
Γ(1 + 1

m )

Γ(ϱ+ 1 + 1
m )

[αϱ
1∑

n=0

S(1)I(1− n) + αϱβϱ
1∑

n=0

S(1)T(1− n)− k2E(1)]ζ2ϱ

+
Γ(1 + 2

m )

Γ(ϱ+ 1 + 2
m )

[αϱ
2∑

n=0

S(2)I(2− n) + αϱβϱ
2∑

n=0

S(2)T(2− n)− k2E(2)]ζ3ϱ

+
Γ(1 + 3

m )

Γ(ϱ+ 1 + 3
m )

[αϱ
3∑

n=0

S(3)I(3− n) + αϱβϱ
3∑

n=0

S(3)T(3− n)− k2E(3)]ζ4ϱ.

A(ζ) =A(0) +
1

Γ(ϱ+ 1)
[r1λ

ϱE(0)− k3A(0)]ζϱ +
Γ(1 + 1

m )

Γ(ϱ+ 1 + 1
m )

[r1λ
ϱE(1)− k3A(1)]ζ2ϱ

+
Γ(1 + 2

m )

Γ(ϱ+ 1 + 2
m )

[r1λ
ϱE(2)− k3A(2)]ζ3ϱ +

Γ(1 + 3
m )

Γ(ϱ+ 1 + 3
m )

[r1λ
ϱE(4)− k3A(4)]ζ4ϱ.

I(ζ) =I(0) +
1

Γ(ϱ+ 1)
[ωϱE(0) + θϱA(0)− k4I(0)]ζ

ϱ +
Γ(1 + 1

m )

Γ(ϱ+ 1 + 1
m )

[ωϱE(1) + θϱA(1)

− k4I(1)]ζ
2ϱ +

Γ(1 + 2
m )

Γ(ϱ+ 1 + 2
m )

[ωϱE(2) + θϱA(2)− k4I(2)]ζ
3ϱ +

Γ(1 + 3
m )

Γ(ϱ+ 1 + 3
m )

[ωϱE(3)

+ θϱA(3)− k4I(3)]ζ
4ϱ.
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T(ζ) =T(0) +
1

Γ(ϱ+ 1)
[ξϱI(0)− k5T(0)]ζϱ +

Γ(1 + 1
m )

Γ(ϱ+ 1 + 1
m )

[ξϱI(1)− k5T(1)]ζ2ϱ

+
Γ(1 + 2

m )

Γ(ϱ+ 1 + 2
m )

[ξϱI(2)− k5T(2)]ζ3ϱ +
Γ(1 + 3

m )

Γ(ϱ+ 1 + 3
m )

[ξϱI(3)− k5T(3)]ζ4ϱ.

R(ζ) =R(0) +
1

Γ(ϱ+ 1)
[γϱE(0) + µϱT(0)− k6R(0)]ζϱ +

Γ(1 + 1
m )

Γ(ϱ+ 1 + 1
m )

[γϱE(1) + µϱT(1)

− k6R(1)]ζ2ϱ +
Γ(1 + 2

m )

Γ(ϱ+ 1 + 2
m )

[γϱE(2) + µϱT(2)− k6R(2)]ζ3ϱ +
Γ(1 + 3

m )

Γ(ϱ+ 1 + 3
m )

[γϱE(3)

+ µϱT(3)− k6R(3)]ζ4ϱ.

8.3 Graphical representation

In this section, we examine how well our established iterative approach and the chosen frac-
tional derivative align with the graphs behaviors. We utilize the data provided in Table 1 for this
analysis. We simulate all compartments for various fractional orders and an integer order.

(a) (b)

Figure 3: Graphical comparison of approximate solution of the HPM and FDTM for the Model (2) at ϱ = 1.

(a) (b)
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(c) (d)

Figure 4: Graphical representation of the approximate results of susceptible, immunized, exposed, and asymptomatic classes for orders
ϱ = 1, 0.95, 0.85, 0.75.

(a) (b)

Figure 5: Graphical representation of the approximate results of infected, and treatment classes for orders ϱ = 1, 0.95, 0.85, 0.75.

Figure 6: Graphical representation of the approximate results of recovered class for orders ϱ = 1, 0.95, 0.85, 0.75.
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First, we present comparison graphs in Figure 3(a)-3(b) to evaluate different compartments of
the model for ϱ = 1. The compartments results obtain through the FDTM and HPM techniques.
The simulations exhibit similarity, indicating that both schemes yield consistent results. The HPM
stands out as a superior choice for solving fractional order mathematical models of infectious dis-
eases due to its ability to handle strong non–linearity, simplicity and flexibility, rapid convergence,
broad applicability, and effectiveness. These advantagesmakeHPM a powerful tool for accurately
modelling and predicting the dynamics of infectious diseases [27]. Due to these advantages, we
choose HPM to find the solution of the model (2) at different fractional orders.

Figure 4(a) shows the susceptible class is decreasing with the time increases. This is due to
self–immune against new epidemic infections. The immunized class decreases with different frac-
tional orders at varying rates, as depicted in Figure 4(b). The exposed class initially decreases and
increases due to change in the time (days) as presented in Figure 4(c). This is due to an increase
in asymptomatic individuals. After 150 days, exposed class shows stability. Figures 4(d) and 5(a)
illustrate the decline and growth of the asymptomatic and infected classes, indicating a rise in
sickness or innate affliction within the community. The proportion of cured individuals increases
with the adoption of appropriate treatment and recovered classes as shown in Figure 5(b) and
Figure 6 respectively.

The rate at which the population grows or declines changes more rapidly at lower fractional
orders, but this pattern reverses as the fractional order increases, with higher fractional orders
leading to faster population growth or decline in a specific class. The figures demonstrate the sta-
bility and convergence of the model classes. From the graphical observation, the health improve-
ment can be expected in this population over time. The convergence of the curves for fractional
orders is observed to be faster as compared to the integer order 1, attributes to the robustness of
our suggested model. Moreover, we observed from the graphical results, that the recovered class
grows due to self–immunity and treatment, while the susceptible class declines rapidly. It means
strong immune system and appropriate treatment of infected individuals can cause to decrease
the effects of disease.

9 Conclusions

This study highlights the transmission dynamics of TB using a mathematical model with the
Caputo fractional derivative, incorporating immune and asymptomatic individuals. We proved
the existence and uniqueness of solutions using fixed point theory and analyzed Hyers–Ulam sta-
bility. Sensitivity analysis showed that reducing the parameter θ lowered the number of infected
cases. Numerical simulations were carried out by using the HPM and FDTM. Unlike traditional
methods that require discretization or simplification, HPM provides quick and accurate solutions
without approximations, while FDTM effectively avoids rounding errors. Both methods are ideal
for solving complex nonlinear problems involving advanced mathematical concepts. Graphical
representations demonstrated the decline in the number of asymptomatic and susceptible classes
due to self–immune response and appropriate treatment, suggesting that a healthy diet and sup-
portive care for those who are infected can help to reduce the disease effects.

In future work, we will use this research to analyze the pandemics in other states. In order
to give decision–makers more effective methods for halting the spread of TB, our future research
may potentially take optimal control theory into account.
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